
Published by the IEEE CS n 1536-1268/08/$25.00 © 2008 IEEE 	 PERVASIVE computing� �

Education & Training
Editor: Scott F. Midkiff n Virginia Tech n midkiff@vt.edu

A s a field, computer science faces a
problem. From 2000 to 2004, the

percentage of first-year undergraduates
planning to major in CS declined by
more than 60 percent (see the “Declining
Interest in Computer Science” sidebar).1

To attract more students, the intro-
ductory CS curriculum must be moti-
vating and relevant. CS courses that
are set in a motivating context (for
example, using multimedia, gaming,
or robotics) can excite students and get
them hooked.

Other researchers have worked on
introductory programming classes
with robots as well as introduc-
tion to robotics classes (http://myro.
roboteducation.org/robobiblio). We
didn’t want to create a robotics course
but rather an introductory CS course
based on robots. Introduced properly,
robots make visible and tangible those
aspects of CS that are often hidden
behind computer screens and in com-

puter memory. To further this goal,
we formed the Institute for Personal
Robots in Education (IPRE), a joint
effort between Georgia Tech and Bryn
Mawr College and sponsored by Micro-
soft Research (www.roboteducation.
org). This article discusses the first-year
results of a three-year project.

Institute for Personal
Robots in Education
The IPRE curriculum is based on sev-
eral key ideas:

use of a personal robot;
tools with “a low floor and a high
ceiling”—that is, they’re easy for
a novice to learn but have enough
power so that an expert will continue
to use them; and
stretching the student’s perceptions
of computing.

An essential element of our approach

•
•

•

is that every student should have his
or her own robot. With regard to our
educational vision, the most important
features of these robots are that they’re
inexpensive, robust, and convenient
(portable), and they take full advantage
of the students’ computers for develop-
ing, debugging, and running programs
that control the robot.2 Previous work
found that students who are only able
to use robots during assigned lab hours
suffer when compared to peers who
don’t need access to the lab to work on
their (nonrobot) programs.3 A personal
robot is small enough to be carried to
lab and class, and individual ownership
lets the students work when and where
they choose.

Robot hardware
We use the Parallax Scribbler (www.
scribblerrobot.com) with a custom IPRE

Editor’s Intro

An exciting new initiative at Georgia Tech and Bryn Mawr College is using personal
robots both to motivate students and to serve as the primary programming platform
for the Computer Science 1 curriculum. Here, the authors introduce the initiative and
outline plans for the future. I welcome your comments and suggestions for future
columns. I can be reached at midkiff@vt.edu. � —Scott Midkiff

Quick Facts

Course: Computer Science 1 (CS1)
Level: Undergraduate
Institutions: Georgia Tech, Bryn Mawr

College
Contact: Tucker Balch (tucker@cc.

gatech.edu)
URL: www.roboteducation.org

Designing Personal Robots
for Education: Hardware,
Software, and Curriculum
Tucker Balch, Jay Summet, Doug Blank, Deepak Kumar, Mark Guzdial,
Keith O’Hara, Daniel Walker, Monica Sweat, Gaurav Gupta, Stewart Tansley,
Jared Jackson, Mansi Gupta, Marwa Nur Muhammad, Shikha Prashad,
Natasha Eilbert, and Ashley Gavin

�	 PERVASIVE computing� www.computer.org/pervasive

Education & Training

Education & Training

add-on board (a dongle) as our robot
platform (see figure 1). The robot has
five infrared sensors, three photo sen-
sors, a low- to medium-resolution color
camera, programmable LEDs, a dual-
tone speaker, and a Bluetooth wireless
communications link (built-in or
through a USB Bluetooth dongle). Addi-
tionally, the robot can communicate
using infrared and can detect colored
regions onboard.

Because we wanted all the students
to have their own personal robot that
they could carry between dorms and
classrooms, our primary consideration
when selecting a hardware platform
was cost, with robustness as a second-
ary consideration. Ideally, we’d like
the robot-and-textbook combination
to cost less than US$150 to match the
average price of a typical introductory
science textbook.

Each student’s computer sends com-
mands to his or her robot and receives

sensor values back via the wireless serial
link. Not executing the programs on
the robot allows for easier debugging
and user-program interaction via the
keyboard and screen. It also allows for
less expensive hardware and greater
programming capabilities using the
advanced processing power of the stu-
dent’s laptop. For example, the speak
(“Hello World”) command uses laptop-
based text-to-speech synthesis, as the
robot’s speaker and microprocessor do
not support general sound output. Our
hardware package containing the $60
robot and the $90 custom IPRE add-on
board begins to approach our target price
for the course. We’ve also integrated sup-
port for USB game pad controllers ($10)
that students can use to write interactive
programs (see figure 2).

Myro software
Our programming infrastructure,
named Myro, was designed to directly

support the curriculum’s goals by creat-
ing an intuitive, easy-to-learn, yet pow-
erful interface to connect each student
with his or her robot. An earlier tool,
Pyro, enabled students already familiar
with computer science to easily learn
how to control a robot by serving as a
high-level programming paradigm for a
wide variety of robots and sensors.4

In contrast, the primary design goal
for Myro is to allow novices to easily
control a personal robot while learning
basic programming concepts. Myro
is a cross-platform tool that works on
Macintosh, Linux, and Windows oper-
ating systems and is written in Python.
Python is a high-level interpreted script-
ing language that itself exhibits many
of our pedagogical goals. During the
pilot program, we developed a set of
functions, objects, and nomenclature
that helps students quickly pick up the
language and syntax and jump to the
heart of issues in computation. Myro is
open source and developed with feed-
back from the academic community. It
supports the Surveyor, Roomba, and
Boe-Bot robots in addition to the Scrib-
bler. An implementation of Myro using
the Microsoft Robotics Studio (www.
microsoft.com/robotics) is in active
development and supports additional
hardware.

To the student, Myro is just another
Python module that can be imported,
similar to the math, string, or time
modules. The Myro API lets novice stu-

Figure 1. A Parallax Scribbler robot
with an Institute for Personal Robots
in Education add-on board.

Declining Interest in Computer Science

Data collected by the US National Science Foundation indicates that while the num-
ber of Advanced Placement tests taken by high school students overall has increased
by 33 percent, the number of AP tests in computer science (CS) has dropped by 20
percent. In fact, the number of AP tests taken has gone up in every field except CS,
which is no longer viewed as a “hot” career. A second but equally important problem
is retention—on average, at least half of the college students majoring in CS withdraw
from the major, and most of these students withdraw during the first year.1 In contrast,
according to the Bureau of Labor Statistics, the number of US jobs for IT professionals
will grow by more than 1.2 million in the next decade.

A variety of factors contribute to students’ lack of interest and participation. Many
students see computing as an asocial activity that’s best suited to men drawn to
computers from an early age.2 Many female undergraduates in CS programs reported
feeling socially isolated from and less capable than their male peers, particularly
if they didn’t have extensive computing experience prior to college.2 In addition,
many women and underrepresented minority students view CS as tedious, boring,
and irrelevant,2 with little room for creativity.3 Beginning students have difficulty see-
ing the real-world relevance of topics such as byte representations and algorithmic
efficiency.2 Faced with a difficult curriculum, an unwelcoming culture, and course
lectures and assignments that seem irrelevant to real-world problems, many women
and underrepresented minorities choose not to pursue CS.

References

	 1.	 E. Seymour and N.M. Hewitt, Talking about Leaving: Why Undergraduates Leave the Sciences,
Westview Press, 2001.

	 2.	 J. Margolis and A. Fisher, Unlocking the Clubhouse: Women in Computing, MIT Press, 2002.

	 3.	 S.L. Pfleeger et al., “Increasing the Enrollment of Women in Computer Science,” Sigcse Bull., vol.
33, no. 1, 2001, pp. 386–387.

APRIL–JUNE 2008	 PERVASIVE computing� �

EDUCATION & Training

dents control their robot and provides
easy-to-use functions for

robot movement,
sensor readings,
multimedia and image processing,
automatic web publishing,
communication via instant messag-
ing (Jabber client),
music and tone generation, and
text-to-speech translation.

As an example, figure 3 shows a com-
plete program we wrote in Python using
the Myro API.

This program loads the Myro librar-
ies; connects to the robot; takes,
records, and displays a picture; sam-
ples the brightness; and turns around
a little. It repeats this for 60 seconds,
after which it saves an animated image
of all the pictures it took (essentially a
movie of what was around the robot),
computes and prints out the average
observed brightness, and then says out
loud that it has completed its task.

Myro provides additional easy-to-use
functionality to process images using an
interface based on Mark Guzdial’s media
computation framework.5 Using the
IDLE development environment (http://
wiki.python.org/moin/IDLE), students
can develop their programs interactively
at first, by entering code line by line and
inspecting and manipulating the results.
This lets novice users quickly experi-
ment and learn without the traditional
compile-execute-debug cycle.

With a “low floor” (ease of use for
novices) as our goal, we’re evolving even
the most basic API commands on the
basis of ideas and feedback observed
in our test courses and in our own
research on robotics and AI. As an
example, in the previous example we
used a time-controlled loop with the
timeRemaining(T) function that repeats the
body of the loop for T seconds. In most
robot behaviors that students design,
it’s best to run the behavior for a limited
amount of time and then to stop and
evaluate the behavior. Traditionally, we
can do this with Python using a loop

•
•
•
•
•

•
•

structure that checks the current time
versus the starting time. A program
structure that uses the timeRemaining()
function is simpler and more appealing
for beginning students.

As a second example, in our research
on doing semantic analysis of natural
language interactions with robots, we
discovered that most imperative com-
mands implicitly have a limited time
specification. Consider the command
“Move forward.” Given to a human, this
command doesn’t imply that he or she
should move forward forever. Yet, most
robot commands, initial versions of
Myro included, implement this request
using the command forward(defaultSpeed).
That is, it just keeps moving until told
to stop. This is a subtle semantic issue,
but from a psycholinguistic standpoint,
all such commands should have a time-
limited behavior. We thus modified our
API to have the movement commands
take a duration parameter forward(speed,
duration). The robot moves forward at a
given speed for the duration specified
(in seconds) and then stops. There are
several instances in the design of the
Myro API where we incorporate these
kinds of insights.

When first teaching the movement
commands, we demonstrate the atomic,
blocking versions of the commands.
However, when making their robots
sing and dance, the students usually
ask if it’s possible to have the robot beep
while moving. This gives us the oppor-

tunity to explain the difference between
the forward(1,1) and forward(1) commands
and how the latter can be used with a
beep (1,440) and stop() to cause the robot to
beep at 440 Hz (A above middle C) for
one second while moving forward.

Curriculum
Our vision is that students registering
for a Computer Science 1 (CS1) course
will go to the bookstore and purchase
their own personal robots for approxi-
mately the cost of a textbook. Cur-
rently, the $150 cost is more expensive
than most textbooks, but we expect
this cost to decrease. We have let the
curriculum’s needs drive the selection
of our robot.

Deciding to add a particular feature
to the robot is driven by the need to
motivate or achieve a teaching goal.
The best example of this is the cam-
era, which we added for three reasons.
First, giving access to a camera makes
the course more media oriented, which
motivates and attracts students who
care more about media than computa-
tion. Second, it provides an example 2D
data structure that lets us teach array
accessing and looping. And finally, it
provides interesting content that the
robot can post to its website and that
we can use to teach basic networking
and web publishing concepts.

Figure 2. Myro supports USB game pads
that students can use to write interactive
controllers.

from myro import *
init()
samples = []
pics = []
while timeRemaining(60):
 pic = takePicture()
 show(pic)
 pics.append(pic)
 samples.append(getBright(“center”))
 turnLeft(0.5, 0.2)
savePicture(pics, “LookAroundMovie.gif”)
avgBrightness = sum(samples)/len(samples)
print “Average brightness is”, avgBrightness
speak(“I have completed my mission!”)

Figure 3. A complete program written in
Python using the Myro API.

�	 PERVASIVE computing� www.computer.org/pervasive

Education & Training

Education & Training

We want the students to use tools (a
programming language and an environ-
ment) that are easy to learn and allow
them to get started quickly. Python’s
built-in development environment meets
this goal, as students can issue commands
that are interpreted immediately, letting

the students explore one command at a
time. At the same time, we don’t want
to limit students to an environment or
language designed specifically for CS1;
the environment must be scalable and
realistic. Such environments let students
easily carry over concepts they learn

in CS1 into more advanced program-
ming environments, and they’ll realize
they can potentially transition the skills
they’re learning into a career. By show-
ing students examples of real companies
that are using Python and are looking to
hire programmers, we show them that
Python has a high ceiling.

We also strive to keep each program-
ming assignment tied to the robot and
a physical problem that it must solve
(escape a maze, seek a light, give a per-
formance). This highlights the fact that
computer science is not simply program-
ming but a tool used in general problem
solving. We try to make computing a
medium for creativity and social activ-
ity. We encourage collaboration on
everything in the class except exams,
and we depict and evaluate all robot
exercises as performances or individual
challenges rather than as competitions
among the students. These open-ended
assignments deliberately value creativ-
ity and story telling in addition to pre-
senting technical challenges. We grade
students not only on their programs’
technical correctness but also on overall
presentation style, including set pieces
and decorations (see figure 4).

Our curriculum development has pro-
duced Myro reference materials, exten-
sive materials for instructors, and an
11-chapter web-based textbook called
Computer Science 1—An Introduction
with Robots (see the sidebar “A Personal
Robot-Based Textbook”). The most
important aspect of curriculum design is
to embed the personal robot into a CS1
course in a way that seems natural and
inviting for students. This required a fresh
approach to the overall CS1 syllabus and
rethinking of the traditional sequence of
topics presented in CS1. While the class
deviates from traditional approaches
such as the IEEE Computer Society/
ACM standard curriculum (www.sigcse.
org/cc2001/cs-introductory-courses.
html), its overall treatment of topics
provides comprehensive coverage of tra-
ditional CS1 concepts. In fact, in many
ways, it goes beyond the traditional
notion of a CS1 syllabus. Yet, the key

Figure 4. A student’s robot “in costume” for a performance.

A Personal Robot-Based Textbook

Chapter 1. “The World of Robots” introduces the Scribbler robot and Myro software.
Chapter 2. “Robots: Personal or Otherwise” introduces Python, its development

environment, and how Myro abstracts robot movements into simple Python
commands.

Chapter 3. “Building Brains” introduces programming concepts, including the notion
of a program and the use of names to represent values, parameters, and functions.

Chapter 4. “Sensing the World” introduces robot sensors and the data types of the
values they return.

Chapter 5. “Making Decisions” introduces If statements, traditional computational
examples, and the math library and other arithmetic expressions.

Chapter 6. “Behaviors” introduces the idea of programming robot behaviors using the
Braitenberg paradigm—that is, the same behaviors that can be programmed using
decision-making structures can be accomplished through simple mathematical
transformations.

Chapter 7. “Control Paradigms” introduces the two kinds of robot control paradigms
that the students have been using and discusses the advantages and shortcomings
of these paradigms.

Chapter 8. “Making Music” explores sound and music.
Chapter 9. “Communication” presents an instant-messaging-like chat interface devel-

oped in Myro and web publishing.
Chapter 10. “Computing & Computation” introduces the notions of an algorithm,

problem solving in the programming process, and the limits of computation.
Chapter 11. “Applications of Robots” presents the current state of the art of robot ap-

plications and looks into the future.

APRIL–JUNE 2008	 PERVASIVE computing� �

EDUCATION & Training

driving factor in this curriculum’s design
is the exploratory and engaging nature
of robots.

O ur initial prototype hardware is
robust and inexpensive enough

to test our curriculum and software
on multiple classes. Our curriculum,
software, and hardware platform are
improving as we iterate and teach more
classes. Although we’re still in the
early stages of our three-year program,
we’re beginning our dissemination and
assessment process.

Over the next two years, we intend
to improve our hardware platform and
arrange for its manufacture and sale,
allowing interested parties to purchase
a ready-to-use robot. We’ll also pub-
lish a robot and software standard,
enabling third parties to build their own
Myro-compatible robots and software.
We’re continuing development of the
Myro implementation by leveraging the
Microsoft Robotics Studio’s capabili-
ties, including additional programming
languages through the .NET Common
Language Runtime in addition to Iron
Python. We’ll continue development
of our curriculum, teachers’ manuals,
sample homework, and textbook.

Much of our work is already visible
on the Web, including the Myro soft-
ware and our textbook (www.robot-
education.org). We’re writing the latter
via a wiki that has public read access.
We encourage you to consider work-
ing with us—we’re actively looking for
multiple schools throughout the US to
evaluate our curriculum.

Acknowledgments

This work was funded in part by Microsoft

Research.

References

	 1.	 J. Vegso, “Interest in CS as a Major
Drops among Incoming Freshmen,”
Computing Research News, vol. 17, no.
3, 2005, www.cra.org/CRN/articles/
may05/vegso.html.

	 2.	 D. Kumar et al., “Engaging Computing
Students with AI and Robotics,” Using
AI to Motivate Greater Participation
in Computer Science: Papers from the
AAAI Spring Symp., tech. report SS-08-
08, AAAI Press, 2008.

	 3	 B. Fagin and L. Merkle, “Measuring
the Effectiveness of Robots in Teaching
Computer Science,” Sigcse Bull., vol. 35,
no. 1, 2003, pp. 307−311.

	 4.	 D. Blank et al., “Pyro: A Python-Based
Versatile Programming Environment
for Teaching Robotics,” ACM J. Edu-
cational Resources in Computing (Jeric
05), vol. 3, no. 4, ACM Press, 2005.

	 5.	 M. Guzdial, Introduction to Computing
and Programming in Python: A Multi-
media Approach, Prentice Hall, 2004.

Tucker Balch is IPRE director and an associate

professor in interactive and intelligent comput-

ing at Georgia Tech University. Contact him at

tucker@cc.gatech.edu.

Jay Summet is a postdoctoral fellow in cur-

riculum development and evaluation at Geor-

gia Tech University. Contact him at summetj@

cc.gatech.edu.

Doug Blank is codirector and lead software

designer for IPRE and an associate professor at

Bryn Mawr College. Contact him at dblank@

cs.brynmawr.edu.

Deepak Kumar is a a co-principal investiga-

tor for curricula for IPRE and a professor and

chair of the Computer Science Department at

Bryn Mawr College. Contact him at dkumar@

cs.brynmawr.edu .

Mark Guzdial is a co-principal investigator for

curricula at Georgia Tech. Contact him at guzdial@

cc.gatech.edu.

Keith O’Hara is a doctoral candidate and

an instructor of robot hardware and software

design at Georgia Tech. Contact him at kjohara@

cc.gatech.edu.

Daniel Walker is a research scientist and lead

hardware design engineer at Georgia Tech. Con-

tact him at danielbw@cc.gatech.edu.

Monica Sweat is an instructor in curriculum

evaluation at Georgia Tech. Contact her at

sweat@cc.gatech.edu.

Gaurav Gupta is an IPRE fellow and a master’s

degree candidate at Georgia Tech. Contact him

at gaurav@cc.gatech.edu.

Stewart Tansley is program manager at

Microsoft Research. Contact him at stansley@

microsoft.com.

Jared Jackson is a research software develop-

ment engineer in the Extended Research and

Programs group at Microsoft Research.

Mansi Gupta is a student at Bryn Mawr Col-

lege. Contact her at mgupta@brynmawr.edu.

Marwa Nur Muhammad is a student at Bryn

Mawr College. Contact her at mmuhammad@

brynmawr.edu.

Shikha Prashad is a student at Bryn Mawr Col-

lege. Contact her at sprashad@brynmawr.edu.

Natasha Eilbert is a 2007-2008 IPRE fellow and

a student at Bryn Mawr College. Contact her at

neilbert@myro.roboteducation.org.

Ashley Gavin is an IPRE fellow and a student

at Bryn Mawr College. Contact her at agavin@

brynmawr.edu.

NE
X

T
 ISSUE

 MOBILE AND UBIQUITOUS SYSTEMS

July-September 2008:

The Hacking
Tradition

This issue will explore what
motivates hackers in the

pervasive computing field,
identify reverse-engineering

tools and techniques,
and showcase examples

of newly created systems.

computer.org/pervasive

